Interleukin-1beta augments in vitro alveolar epithelial repair.
نویسندگان
چکیده
Biologically active interleukin (IL)-1beta is present in the pulmonary edema fluid obtained from patients with acute lung injury and has been implicated as an important early mediator of nonpulmonary epithelial wound repair. Therefore, we tested the hypothesis that IL-1beta would enhance wound repair in cultured monolayers from rat alveolar epithelial type II cells. IL-1beta (20 ng/ml) increased the rate of in vitro alveolar epithelial repair by 118 +/- 11% compared with that in serum-free medium control cells (P < 0.01). IL-1beta induced cell spreading and migration at the edge of the wound but not proliferation. Neutralizing antibodies to epidermal growth factor (EGF) and transforming growth factor-alpha or inhibition of the EGF receptor by tyrphostin AG-1478 or genistein inhibited IL-1beta-induced alveolar epithelial repair, indicating that IL-1beta enhances in vitro alveolar epithelial repair by an EGF- or transforming growth factor-alpha-dependent mechanism. Moreover, the mitogen-activated protein kinase pathway is involved in IL-1beta-induced alveolar epithelial repair because inhibition of extracellular signal-regulated kinase activation by PD-98059 inhibited IL-1beta-induced alveolar epithelial repair. In conclusion, IL-1beta augments in vitro alveolar epithelial repair, indicating a possible novel role for IL-1beta in the early repair process of the alveolar epithelium in acute lung injury.
منابع مشابه
Interleukin-1b augments in vitro alveolar epithelial repair
Geiser, Thomas, Pierre-Henri Jarreau, Kamran Atabai, and Michael A. Matthay. Interleukin-1b augments in vitro alveolar epithelial repair. Am J Physiol Lung Cell Mol Physiol 279: L1184–L1190, 2000.—Biologically active interleukin (IL)-1b is present in the pulmonary edema fluid obtained from patients with acute lung injury and has been implicated as an important early mediator of nonpulmonary epi...
متن کاملIn vivo and in vitro effects of salbutamol on alveolar epithelial repair in acute lung injury.
BACKGROUND Acute lung injury is an important cause of respiratory failure in the critically ill patient. It is caused by damage to the alveolar barrier with subsequent alveolar flooding leading to the development of refractory hypoxaemia. beta Agonists stimulate alveolar fluid clearance in animal models of lung injury. In a clinical trial (BALTI-1), intravenous beta agonists reduced extravascul...
متن کاملDefect of hepatocyte growth factor production by fibroblasts in human pulmonary emphysema.
Pulmonary emphysema results from an excessive degradation of lung parenchyma associated with a failure of alveolar repair. Secretion by pulmonary fibroblasts of hepatocyte growth factor (HGF) and keratinocyte growth factor (KGF) is crucial to an effective epithelial repair after lung injury. We hypothesized that abnormal HGF or KGF secretion by pulmonary fibroblasts could play a role in the dev...
متن کاملGene transfer of hepatocyte growth factor by electroporation reduces bleomycin-induced lung fibrosis.
Abnormal alveolar wound repair contributes to the development of pulmonary fibrosis after lung injury. Hepatocyte growth factor (HGF) is a potent mitogenic factor for alveolar epithelial cells and may therefore improve alveolar epithelial repair in vitro and in vivo. We hypothesized that HGF could increase alveolar epithelial repair in vitro and improve pulmonary fibrosis in vivo. Alveolar woun...
متن کاملIron is a regulatory component of human IL-1beta production. Support for regional variability in the lung.
The human lung accumulates iron with senescence. Smoking escalates the accumulation of iron, and we have demonstrated regional variability in the accumulation of iron in smokers' lungs. Iron has been reported to influence the production of a number of proinflammatory mediators, including human interleukin (IL)-1beta. We postulated that we could (1) demonstrate regional differences in the releas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 279 6 شماره
صفحات -
تاریخ انتشار 2000